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Introduction

Modern multichannel hearing aids (HAs) are capable of
using sophisticated signal processing algorithms to en-
hance acoustic signals for the wearer. One common tech-
nique is to use directional filtering (eg. beamforming),
that is, the sound from some particular direction is en-
hanced, whereas sounds from other directions are sup-
pressed.

Such directional filters typically point in a fixed direction
to the front of the wearer. However, as the processing
power in hearing aids increases, more sophisticated algo-
rithms are being investigated, where the acoustic scene
is intelligently evaluated in order to identify all sources
the user might be interested in; this could be the case
e.g. where the wearer is in a crowd of people. Normal
hearing persons can easily deal with this kind of scenario,
but it can be challenging for hearing impaired persons.
An intelligent hearing aid should be able to mimic this
ability for the wearer by analysing the acoustic scene (a
process termed Computational Auditory Scene Analysis,
CASA), enhancing some sources (speakers of interest)
while suppressing others (eg. background babble).

This contribution details research into the aspect of
speaker tracking, in this context referring to a form of
short-time speaker identification. In particular, the goal
is to determine if a speaker observed at a previous in-
stance reappears in the acoustic scene at a different spa-
tial location.
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Figure 1: Schematic diagram of a changing acoustic scene.
The HA user first attends speaker S1, then turns (red arrow)
to pay attention to speaker S2. New speech originating from
S1 now originates from a different direction relative to the
HA user’s head, but should not get suppressed. Speech from
interfering speaker S3 should also be suppressed, before and
after the head movement.

A sample scenario is depicted in Fig. 1. The HA user
faces speaker S1, thus speech arrives from the front. The
user then turns to face speaker S2. When speaker S1
resumes speaking the relative direction of S1 has changed
since the HA user is still facing S2. A hearing aid should
decide that since S1 was being attended to before, the
speech coming from the direction of S1 should not be
suppressed.

From the perspective of the signal analysis in the HA, this
problem is challenging for several reasons. As a speaker
recognition problem, the target speaker is in general un-
known to the system prior to the current conversation,
thus no speaker-specific models can be stored; models
must be stored or adapted in real-time. The amount of
speech observed from a new or recurring speaker is very
limited (in the order of seconds), which is typically in-
sufficient to adapt generic models. Finally, the computa-
tional complexity and memory footprint must be kept low
since HAs are small devices with limited battery power.

In [1], we proposed a system that could track a speaker
in given about 2 or 3 seconds of speech (20 dB SNR), us-
ing mel-frequency cepstral coefficients (MFCC) as main
features, showing the potential of the proposed “finger-
print” approach. In this paper, parallel to [2], we present
an examination of a pitch-based speech feature (based on
work in [3]) for improved speaker tracking, which can dis-
tinguish speakers with less observed speech and is more
robust to noise.

Background

The speaker tracking method proposed in [1] is based on
the concept of “fingerprints,” that is, a small amount of
data extracted from the observed data that will identify
the speaker while stripping away information about the
speech content and acoustic path. The fingerprint can be
extracted from any amount of speech, though the more
speech is used to generate the fingerprint, the better it
should represent the individual speaker.

We begin by training (offline) a database of K generic
speaker models, S,k = 1,..., K, and assume that given
speaker in the scene is equally likely to match any speaker
model S in the database. Given a frame of speech signal
y[m], where m is the time index, for each speaker model
S and each m in which speech is detected, we compute
the a posteriori probability

B P(y[m]|Sk)P(Sk)
P(Sk|y[m]) = S w P(y[m] | Sp)P(Sk) .
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where Z,, is the normalization factor for the particu-
lar observation (time frame) m. In [1], these probabili-
ties are computed by using Gaussian mixture models for
Sk, whose a posteriori probability can be computed effi-
ciently and integrated over multiple frames.

Assuming we now have a segment of speech y[m|,m €
Ref from one speaker, and we designate this the refer-
ence speaker. We compute a reference pattern PRef by
summing the a posteriori probabilities P(Sy |y[m]) for
each speaker model k over time, with

pRef _ Z P(Sk |y[m]) = Z ZLP(y[m]ISk),

meERef meRef
(3)

where “Ref” indicates the time frames of the reference
speaker speech segment. Thus PRef = (PRef  pRef)T
is a K-dimensional vector that can be regarded as a “fin-
gerprint” of the reference speaker. Note that as more
speech segments (from potentially other speakers) are
seen by the system, they can be stored as multiple refer-
ence patterns (PRefa pRefs )

Now assume that new speech is observed by the system
and we try to determine is the newly observed speech is
from the reference speaker or a different speaker. As in
(3), the fingerprint of the current speech segment can be
obtained by summing the a posteriori probabilities of the
speech frames being from the generic speaker models,

current _ Z 7P |Sk) (4)

where B is the frame index of the beginning of the current
speech segment and ¢ is the current time frame index.
An example of fingerprinting speech segments is shown
in Fig. 2.
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Figure 2: Tracking speakers by fingerprinting segments.
The first segment results in fingerprint PR°f4 | the second in
PRef2 | The current speech segment beginning at time B until
the current frame ¢ yields fingerprint et

Fingerprints are compared to each other using the nor-
malized correlation,

> PiPy

D(PR,PT) = ik k.
PEPO = prypT]

(5)

which can be compared to a threshold 7. A corre-
lation above this threshold indicates that the current

speech segment is assumed to originate from the refer-
ence speaker. The choice of 7 controls a trade-off: a low
7 leads to more “false accepts,” (FA) that is, other speak-
ers mistaken for the reference, whereas a high 7 means
that “false rejects” (FR) become more likely, where one
speaker is mistaken for many individuals.

Pitch-based features

As reported in [1], MFCCs allowed for a FA/FR rate of
about 30% with 3s of speech in clean conditions. While
this demonstrated the feasibility of the proposed ap-
proach, that performance is deemed insufficient for a real
system, and the main course for improving performance
we investigate is the use of pitch features. In particular,
as the goal is to integrate speaker tracking with a a more
comprehensive CASA system [2], we focus on the “pe-
riodicity degree” (PD) feature as proposed in [3], which
was developed for speech enhancement, but in [2] is used
for glimpse segregation. This feature has shown itself to
be very robust to noise, and below we show that suf-
ficiently speaker-specific features can be extracted from
PD to improve speaker tracking performance.

To compute PD, the signal is analysed by a perceptually
motivated complex-valued gammatone filterbank with
subband filter center frequencies spaced on a nonuniform
(“ERB”) scale. As with MFCCs, the signal is processed
in discrete time frames, and the division of the signal
into time and frequency gives a set of time-frequency (t-
f) bins, which we denote by y(f,m) = y(f,m,n),n =
1,..., N, where f is the subband index, m the time in-
dex as above, and n is the sample index within each t-f
unit. The PD is computed in each t-f bin by combining
two methods, the normalized autocorrelation (NAC) and
the comb filtering ratio (CFR). In the lower-frequency
subbands (Fp) we use y(f,m,n) directly, while in the
subbands with centre frequencies > 1.5 kHz (Fr) we use
the envelope yg(f,m,n) = |y(f, m,n)|. Using

N Ply(n)y(ntp)]
VN Py SN P y(ntp)?
ferFg

NAC(,p) = N TP lye(n)ye(ntp)]
VNP (o)A SN P ye (ntp)?
feFy
(6)
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where - is substituted for the f, m pair, and p is the pitch

candidate index. From the above, PD is computed as the
product of the NAC and CFR, where

D(f, m,p) = max[0.01, NAC(f, m,p) - CFR(f, m,p)].
(8)
For each time frame we sum the PD vector over fre-
quency, PDa(m,p) = Zf PD(f,m,p), from which we
obtain the pitch candidate Po(m) = arg, max PDa(m,p).



Experiment

To evaluate the new feature, the setup as used in [1] was
reused with modifications to accommodate the modified
front-end. The sampling rate of the system is 16 kHz,
and a frame length of 20 ms is used with 50% overlap
for a frame rate of 10 ms. We compute ERB frequency
cepstral coefficients,

F
(9)
which are functionally equivalent to MFCCs but use

the subband decomposition from the filterbank described
above.

EFCC(m, k) = ilog Iy (f, m)|?cos {k(f — %) WL
f=1

All speech samples are taken from the TIMIT [4]
database, but we restrict ourselves to male speakers only
to remove any bias due to the unequal size of the number
of male and female speakers in the database. The generic
speaker models Sy are trained using the 326 male speak-
ers from the training set of TIMIT; using a set of binaural
room impulse responses (BRIR) taken from [5], all speech
from these speakers is rendered at several positions rela-
tive to the head, and all feature vectors from this data is
used to train a GMM with 4 Gaussians for each speaker.

To test tracking performance, 1000 sentence triplets are
created with the structure A-B-A, that is, a sentence from
speaker A, followed by a sentence from speaker B, fol-
lowed by a sentence from speaker A again. All three sen-
tences are rendered at different locations (which includes
head rotation of the receiver), also using the BRIRs from
[5]. For each sentence triplet, speaker A and B are cho-
sen randomly from the test portion of TIMIT. Spatially
uncorrelated speech-shaped noise is added to the signal
at fixed SNR.

Results

We show experimental results using detection error
tradeoff (DET) curves, that show the achievable perfor-
mance for various settings of 7.

Figure 3 shows the performance with 20 dB SNR, similar
to the experiment in [1]. The panels show the perfor-
mance of different feature sets: panel A using 5 selected
EFCCs (1, 2, 3, 6 and 8), panel B those same EFCCs plus
Py. Panel C is the performance using the full EFCC set
(k=1,...,12), without Py, and panel D the performance
using the full feature set. The different lines on each plot
show the performance depending on how much of the
test speech is used to make the reference/not-reference
decision.

The plots show that the performance improves signifi-
cantly with the inclusion of the P, feature, with a 6-
dimensional feature vector slightly exceeding the perfor-
mance of using the 12-dimensional feature vector of the
full EFCC set. Best performance is gained by using the
full EFCC set plus Py. We also see that using more than
2 s of speech does not gain much more in performance,
no matter what features are used.
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Figure 3: Detection Error Tradeoff curves, at 20 dB SNR.
Legends show the amount of speech of the test segment ob-
served. Panel A shows the DET using the 5 most salient
EFCCs, panel B the same plus the Py feature. Panel C shows
the DET using all EFCCs but without Py, and panel D using
all EFCCs and Pp.

Figure 4 shows the same experiment as above, but this
time at a SNR of 10 dB. We note that compared to Fig. 3,
all curves are shifted to the right indicating degraded per-
formance as expected; however, the inclusion of Py makes
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Figure 4: Detection Error Tradeoff curves as in Fig. 3, at
10 dB SNR.

the speaker tracking far more robust to noise. Interest-
ingly, the full EFCC set plus Py seems to be marginally
worse than the partial EFCC set plus Fy; probably the
additional EFCC features add too much noise at this
SNR. Against expectations, the performance still reaches
a plateau after 2 s of speech have been observed.

Discussion

In this article, we examine the use of a pitch feature for
tracking speakers in a dynamic acoustic scene as received
by a hearing aid. The pitch feature we investigate is
available to the hearing aid as part of the initial signal
analysis and for speech enhancement; however we expect
that it is also useful for recognizing individual speakers
within small groups over short time intervals.

The assumption can be made that speakers have an indi-
vidual pitch range that is being used in normal conversa-
tional speech. However, speech pitch and pitch dynamics
can vary due to many factors, and thus relying on pitch as
only feature would probably not be reliable, and should
be always be used in conjunction with more traditional
speaker recognition features (eg. the MFCC-like features
used here).

Overall, a reliable and robust pitch extraction method is
a useful addition to speech-oriented CASA algorithms.
Further research could look into modulating the weight-
ing of pitch features, since the speaker-identifying ability
of pitch may vary depending on the phoneme being spo-
ken.
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