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ABSTRACT

Modern multi-microphone hearing aids employ spatial filter-
ing algorithms capable of enhancing speakers from one di-
rection whilst suppressing interfering speakers of other direc-
tions. In this context, it is useful to track moving speakers in
the acoustic space by linking disjoint speech segments. Since
the identity of the speakers is not known beforehand, the sys-
tem must match short speech segments without having a spe-
cific speaker model or prior knowledge of the speech con-
tent, while ignoring changes in acoustic conditions. In this
paper, we present a method that matches each speech seg-
ment to non-specific speaker models thereby obtaining an ac-
tivation pattern, and then compares the patterns of disjoint
speech segments to each other. The proposed method is low
in computational complexity and memory footprint and uses
mel-frequency cepstral coefficients (MFCCs) and Gaussian
mixture models (GMMs). We find that, when using MFCCs
as acoustic features, the proposed speaker tracking method is
robust to changes in the acoustic environment provided that
sufficiently large segments of speech are available.

Index Terms— speaker tracking, speaker recognition,
GMM

1. INTRODUCTION

Computational Auditory Scene Analysis (CASA) is the anal-
ysis of the acoustic scene in a human-oriented manner [1].
The continuing development of ever-smaller and more effi-
cient processors allows us to use CASA methods in modern
hearing aids, which have tight constraints in their size and
power consumption.

Modern hearing aids typically use multiple microphones,
such that spatial filtering (e.g. beamforming) can be applied
to enhance speech signals relevant to the user [2]. However,
in a complex acoustic scene, determining which speech signal
to focus on can be a difficult problem.

In a multi-speaker context, we consider the problem of
speaker tracking, in the sense that a particular speaker may
be at one specific location (relative to the hearing aid user) in
the acoustic scene, but after a short pause, may have moved
to a different location. The task of a CASA system would
then be to determine that the speaker at the new location is in

fact the same individual as was previously at the old location.
Thus, the hearing aid can avoid suppressing speech signals
that should be enhanced.

To illustrate, one can imagine a hearing aid user listening
to a speaker directly in front, who is interrupted by either an-
other speaker or some other noise to the side. The hearing aid
user then turns his head towards the interfering source. If the
first speaker resumes speaking, the hearing aid should con-
tinue to enhance the speech coming from the original speaker.

From a machine learning perspective, this is a very chal-
lenging problem, as multiple aspects of the signal change: the
acoustic conditions (early reflections and spectral coloration
due to late reverberations and head and ear geometry), the
speech content, and the background noise. Furthermore, the
speaker(s) to be tracked will in general not be known to the
system, thus we cannot train for specific people to be recog-
nized, and lastly, the speech fragments originating from the
speakers to be tracked could be very short.

This problem may be viewed as a speaker recognition
problem where very little training data is available (e.g. the
utterances immediately prior to those of the speaker or prior
to the head movement). It is also similar to the task of speaker
diarization, which typically concerns itself with the problem
of “who spoke when” for transcription tasks of broadcast au-
dio. However, in the context of hearing aids the task can be
expected to be more challenging since the acoustic environ-
ment can be more variable than in broadcast situations, and
recognition needs to be done with as little delay as possible.
In addition, hearing aids have tight constraints on size and
power consumption, thus it is important to consider computa-
tional complexity and memory usage.

In this article we present a method to detect the reoccur-
rence of a speaker based on short speech fragments, with the
assumption that the speech segment boundaries are already
known. Our method is robust to changes in the acoustical
environment (location of the target speaker in the room or
changes in the head-related transfer function (HRTF) due to
head movement) while being low in computational complex-
ity and memory footprint to allow for implementation on a
hearing aid.



2. BACKGROUND

Speaker recognition is the process of identifying persons
based on their voice. The voice of one given speaker will
differ from another based on a number of physical differ-
ences (which cannot be easily altered) as well as prosodic
differences (which the speakers can generally alter in some
way). Considerable work has been done in the field of text-
independent speaker recognition [3], where the recognition
is attempted without constraints of the text the speaker is
saying. If the goal is to recognize a particular speaker or set
of speakers, the system must be trained (usually off-line) with
speech samples of the speaker to be recognized.

Speaker diarization is the process of segmenting a stream
of audio into sections based on the identity of the speak-
ers. It is usually described as solving the problem of “who
speaks when” in the context of transcribing radio broadcasts,
recordings of meetings, etc. [4]. Like the problem of text-
independent speaker recognition, the goal is to recognize
the speaker identity, but typically no a priori model of the
speaker is given. Instead, speaker models are built up by
finding clusters in the feature space of the audio signal, for
example by starting with a Gaussian mixture model (GMM)
based background model [5, 6]. One example of real-time
segmentation and diarization (also called speaker tracking)
can be found in [7], where speaker models are created and
updated as new data arrives. The segmentation and speaker
tracking are tightly linked, and the authors report that seg-
ments need to be longer than 3s for good segmentation and
tracking performance.

Linking speech signals that are spoken by the same
speaker is also useful in the context of hearing aids. In par-
ticular, hearing aids with multiple microphones can employ
spatial filtering methods such as beamforming to enhance or
suppress sounds originating from some given direction [8].
To allow for a more natural use, the spatial filtering needs
to be dynamic (such that the hearing aid user as well as the
target speaker are not required to be immobile). Thus, if the
hearing aid is enhancing the speech originating from some
direction and (possibly after a pause) new speech is detected
from a different direction, the hearing aid could infer that
the new speech is from a speaker that has previously been
enhanced and should therefore also be enhanced.

As in the case of speaker diarization, it is unfeasible to
have models of all the speakers the hearing aid user is likely to
encounter. Instead, the hearing aid needs to build up a short-
term database of recently encountered speakers, and build
models of these speakers only from speech recorded in real-
time without control over the acoustics, noise, or the con-
tent of the speech. In addition, a determination of whether
to match the current speech segment to a previously encoun-
tered segment needs to be made with as little delay as possi-
ble. Furthermore, the algorithm needs to be simple enough
to be implemented on a signal processing chip that fits in a

hearing device and does not drain the battery.

3. SYSTEM DESCRIPTION

The speaker tracking system presented here is based on a
speaker recognition system trained on a large variety of
speakers. The speaker models are trained using a corpus
that is diverse with sentences that are phonetically balanced.
All speech items are pre-processed by convolving each item
with a set of room impulse responses (RIR) to avoid making
the models be specific to one acoustic scenario. The speaker
models are deliberately kept very simple in order keep them
generic.

We assume that segmentation information is available,
that is, the system knows the temporal segment boundaries,
and that in a given time segment all speech originates from
the same speaker, as illustrated in Fig. 1. In the context of a
multi-channel hearing aid, this information is available from
e.g. a localization algorithm [9, 10, 11].
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Fig. 1. The audio signal is segmented by a localizer, and past
segments are transformed into reference patterns with which
the current speech segment is compared.

The task of the speaker tracking algorithm is to link seg-
ments belonging to the same speaker across segment bound-
aries and multiple segments. A full system could generate la-
bels unique to each speaker, label segments according to sim-
ilarity and generate new labels as needed. Further processing
can use the labeled segments eg. for speech enhancement or
transcription.

Given a speech segment (or fragment thereof), the fea-
tures extracted from the audio signal are used to compute an
activation pattern P which in turn is defined based on likeli-
hoods of the extracted features to belong to a series of speaker
models. Similarity between patterns is computed using the
normalized correlation coefficient, and a decision of whether
two speech segments are from the same speaker is made by
comparing this correlation coefficient to a threshold.



3.1. Feature Selection

To analyze the audio signal, we use Mel-Frequency Cepstrum
Coefficients (MFCCs) [12] which are well-understood and
commonly used in speaker and speech recognition tasks [3].
While a variety of other features could be used, MFCCs are
attractive in this framework since they are easy to compute.
An energy-based voice activity detector (VAD) is used to en-
sure that noise-only frames are excluded.

We denote the feature vectors with y[m], where m is the
index of the current observation, which is a time frame where
the VAD detects speech activity. Below, we use yR[m] to
specifically refer to feature vectors from the reference speech
and yT [m] for the speech to be compared to the reference.

Using this segmentation, we define the reference speech
as a temporal segment in the past that we attempt to link to
the current segment of speech (see Fig. 1). There may be
multiple reference speech items that could be matched, but it
is not necessary to store the feature vectors, only the resulting
activation patterns.

3.2. Speaker similarity estimation

We use a set of K speaker models Sk, k = 1, ...,K, and as-
sume all speaker models Sk match the speakers in the au-
dio signal with equal likelihood, thus P (Sk) = const ,∀k.
For each speaker model Sk and each time frame m in which
speech is detected, we compute the a posteriori probability

P (Sk |y[m]) =
P (y[m] | Sk)P (Sk)∑
k′ P (y[m] | Sk′)P (Sk′)

(1)

∼ 1

Zm
P (y[m] | Sk), (2)

where Zm is the normalization factor for the particular obser-
vation (time frame) m.

In the proposed method, the speaker models are repre-
sented by K Gaussian mixture models (GMM) S1, . . . ,SK
with V Gaussians each [5]. The parameters of one GMM Sk
are given by {wk,j ,µk,j ,Σk,j}j=1:V , with wk,1, . . . , wk,V

denoting the mixing proportions, µk,1, . . . ,µk,V denoting the
cluster means, and Σk,1, . . . ,Σk,V denoting the cluster co-
variances. The mixture density is then given by

P (y[m] | Sk) =

V∑
j=1

wk,jbk,j(y[m]), with (3)

bk,j(y) =
1

(2π)D/2|Σk,j |1/2

exp

{
−1

2
(y − µk,j)

T Σ−1k,j(y − µk,j)

}
, (4)

where |Σk,j | denotes the determinant of Σk,j .

Assuming we have a segment of speech from the refer-
ence speaker (only) (yR), we compute a reference pattern PR

by summing the a posteriori probabilities P (Sk |yR[m]) for
each speaker model k over time, with

PR
k =

∑
m∈Ref

P (Sk |yR[m]) =
∑

m∈Ref

1

Zm
P (yR[m] | Sk),

(5)
where “Ref” indicates the time frames of the reference
speaker speech segment. Thus PR = (PR

1 , . . . ,PR
K)T is a

K-dimensional vector that can be regarded as a “fingerprint”
of the reference speaker, and as more speech segments are
seen by the system, they can be stored as multiple reference
patterns PRA,PRB , . . ., as shown in Fig. 1.

Similarly, in the current speech segment, the observations
from the most recent segment boundary up to the current ob-
servation are analyzed by defining the target pattern:

PT
k =

t∑
m=B

1

Zm
P (y[m] | Sk), (6)

where B is the last segment boundary and t is the current
audio frame. Note that PT can be updated online by simple
accumulation when new observations are made.

We can now compare the pattern computed from the cur-
rent speech segmentPT to any reference patternPR, by using
the normalized correlation coefficient as a similarity measure:

D(PR,PT ) =

∑
k PR

k PT
k

‖PR‖‖PT ‖
, (7)

which is at its maximum of 1 if the two patterns match ex-
actly. Note that because of the normalization of D(PR,PT ),
the patterns PR and PT do not have to be normalized by the
number of used time frames. If the system is tracking multiple
speakers, only (7) needs to be repeated for eachPR belonging
to the speakers being tracked.

3.3. Speaker Model Training

A key aspect to the method presented here is the training of
the K speaker models Sk. It is advantageous to have a large
number of speaker models, such that diverse speakers can be
differentiated, however the training data also needs to be well-
balanced phonetically. Should, for example, a phoneme ap-
pear in the training data of only one model speaker, the oc-
currence of that phoneme in the speech being tested would
bias towards that model, causing a false negative detection.
Furthermore, the model speakers should all be recorded using
similar acoustic conditions.

When using the speaker tracking algorithm, an exact
match of a given speaker to the models in the database is
neither required nor expected. Thus, the speaker models can
be very simple, which reduces computational complexity and
memory footprint, but also helps tp avoid biases in the models
since they become very general.



Training the speaker models can be very computationally
expensive, but can be done off-line. Only the trained param-
eters of each speaker model, {wk,j ,µk,j ,Σk,j}j=1:V need be
stored in read-only memory, requiring at worst the storage of
SV (1 +D + (D(D + 1)/2)) floating-point values.

4. EXPERIMENTS

The speaker tracking system presented above was tested us-
ing the TIMIT database [13], which consists of a large num-
ber of speech items spoken by a diverse set of speakers. This
database is split into a training and a test set, with no speak-
ers present in both sets. While the amount of speech for
each speaker is low (10 sentences), there is good coverage
of phonemes by all speakers and the recording conditions are
uniform.

To simulate a realistic acoustic environment for a hear-
ing aid user, we used a set of room impulse responses (RIR)
recorded with a hearing aid model [14]. Speech items were
convolved with the RIR from the front left and right micro-
phones of the hearing aid, then turned back into a single-
channel signal by summation.

The signal analysis used short-time frames of 20 ms, with
a frame advance of 10 ms. A simple VAD discarded frames
with overall energy less than 30 dB below the maximum ob-
served frame energy. From each valid frame, 12 MFCCs (1-
13, the 0th coefficient was discarded) were extracted using a
40-channel filterbank. All processing was done with a sam-
pling rate of 16 kHz.

In our experiment, for both the training and test set, we
used only male speech samples to avoid a bias due to the
lower number of female speakers in the TIMIT database. The
set of speaker models was composed of K = 326 speak-
ers from the training set of the TIMIT database, and we
used GMMs with V = 4 components for all speakers. The
GMMs were trained by rendering all sentences spoken by
each speaker in every direction (−90◦ to 90◦ in 5◦ steps)
relative to the head in one room (“office I”), repeated by also
adding speech-shaped isotropic noise at 20 dB SNR.

We evaluated the algorithm by randomly creating 1000
triplets containing 3 different sentences. Each triplet con-
sisted of two sentences spoken by one randomly selected male
speaker (the reference) and one sentence spoken by another
randomly selected male speaker. There was no overlap in
speakers between the testing set (containing 112 individual
speakers) and the training set described above. Using a differ-
ent room model of the database (“office II”, T60 ≈ 300ms),
each sentence was rendered at a different position/head ro-
tation combination. The reference pattern PR was obtained
from the first sentence of the reference speaker, and portions
of the two other sentences were used to compute test patterns
PT which were then compared to the reference pattern. A
match was declared if D(PR,PT ) exceeded a threshold θ.

Figure 2 shows the histogram of D(PR,PT ). The blue
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Fig. 2. Normalized histogram of D(PR,PT ) for segments
that are full sentences. The histogram for SR = ST is shown
in blue and labeled ”a” and the histogram for SR 6= ST is
shown in green and labeled ”b”.

line (labeled a) shows the distribution for the patterns derived
from two segments originating from the same speaker if the
content and acoustic transfer functions are varied. The green
line show the distribution if in addition the speaker is different
from the reference. For the given test data, the first curve has
a mean of 0.79 and deviation of 0.07; the second has a mean
of 0.60 and deviation of 0.14.
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Fig. 3. Detection error trade-off figure presenting the effect of
truncating the tested segment. Best performance is achieved
if the full speech segment is available.

The performance of the proposed algorithm for online
speaker tracking is shown in Fig. 3, showing the trade-off
between the false alarm probability (a different speaker is
falsely labeled as a match) and the miss probability (a match-
ing speaker is not detected). The dashed blue line shows that



reasonably good performance can be achieved if the complete
speech segment is available, however, if only 3 seconds of
audio is available, performance degrades significantly. This
mirrors the performance reported in [7], where for speaker
tracking at e.g. a false-detection rate of 20%, the authors
reported a recall of 65% (or 35% miss rate) at the speaker
change detection point (for 3–6 s segments), to a recall of
77% (23% miss rate) at the next speaker boundary (the full
speech segment). As in [7], performance degrades even fur-
ther with shorter segments. Using only the first 2 s of speech
in a segment, performance is near a random guess.

An informal (due to the gender-imbalance of the TIMIT
database) test using the same male-speaker trained models de-
scribed above considered the case where both the reference
and contrasting speech was spoken by female speakers; we
found a decrease in performance, where the detection error
trade-off curve for full sentence segments was shifted by 10%
to the right. This suggests that a universal speaker tracker
requires a gender-balanced model set.
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Fig. 4. Detection error trade-off figure presenting the effect of
reducing the number of stored speaker models. Performance
begins to decrease once the speaker database is reduced to 50
speakers, and is significantly lower with only 25 speakers.

In the proposed algorithm, the computational complexity
and memory footprint are linearly dependent on the number
of speaker models in the database. In Fig. 4, we show that the
performance only degrades slightly as the size of the speaker
database is reduced from K = 326 to K = 50, but that fur-
ther reduction of the number of speaker models causes a no-
ticeable loss of performance.

5. DISCUSSION

A hearing aid using spatial filtering can benefit from tracking
speakers as the acoustic conditions change. Tracking speak-
ers in this fashion could prevent accidentally suppressing a

speaker that the hearing aid user is interested in, or enhancing
an interfering speaker that should remain in the background.

Speaker tracking and diarization algorithms have been
studied primarily in the context of analyzing broadcast audio,
where the acoustic environment tends to be well controlled;
furthermore, computational complexity, memory usage, and
algorithmic delay are of less concern than accuracy. In the
context of hearing aids, the acoustic path from a speaker can
change significantly due to head movement or movement
of the speaker. Additionally, computational complexity and
memory usage directly impact battery life, and delay needs
to be minimized, otherwise the hearing aid user could miss
important portions of speech.

In this article, we present a method to link speakers’
speech segments given differences in the acoustic path. Our
method is of low complexity and memory footprint. While
our approach still requires a substantial portion of speech to
make an accurate decision, this may be a limitation of the
selected features (MFCC), as previous MFCC-based methods
also reported needing a similar amount of data (about 3 s of
speech). Further research efforts should examine acoustic
features that can obtain a more rapid decision, while staying
within the constraints of the resources in a hearing aid.
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