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Introduction

The blind segregation of audio sources from a sound
mixture is one of the main problems in computer-based
analysis of audio signals. If several sources overlap in
time and frequency it becomes particularly challenging
to distinguish between them. One method of segregating
such mixtures is the estimation of an ideal binary mask
(IBM). Considering one of the present signals as the
target signal, the IBM labels time-frequency units (t-f
units) in which the target signal is dominant with a 1
while all other t-f units are set to 0. Assuming that the
relevant information about the target is preserved in the
parts where the target is dominant, missing data classi-
fiers can be used to recognize speech or identify speakers.
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Figure 1: A typical mixture of speech signals. A: time-
frequency representation of sentence 1 (”The triumphant war-
rior exhibited naive heroism.”), B: t-f representation of sen-
tence 2 (”The legislature met to judge the state of public
education.”), C: mixture of both sentences. D: Each t-f unit
is labeled according to the dominant source (green and blue
label the two speakers, yellow represents background noise).

In computational auditory scene analysis (CASA) the
IBM is usually estimated by considering the prominent
auditory features of the mixture and assigning t-f units
to different sources, based on the observed features. The
aim of the presented CASA system is to effectively com-
bine periodicity and binaural cues for the estimation of
the IBM and build a framework that allows us to inte-
grate further feature types.

Different algorithms have been suggested that also rely
on joint pitch and spatial cues. One example can be
found in [5] where the pitch and azimuth of concurrent
sources are tracked across time. Other systems can be
found that have a similar structure but take different ap-
proaches on how the available features are analyzed and
eventually combined to achieve the segregation [6].

System Overview

Since the human auditory system shows the ability to
perform blind audio source segregation, it often serves
as a model for the design of CASA systems. Especially
principles from auditory scene analysis (ASA) [4] are con-
sidered in this context. There are two main processing
steps in ASA which motivate the structure of the pre-
sented system, namely the segmentation and the group-
ing stage. Segmentation describes the decomposition of
the incoming mixture into units that likely originate from
the same source. The resulting segments are thereafter
linked with each other if they belong to the same source
(grouping).
Fig. 2 shows an overview of the proposed system. After a
pre-processing stage which transfers the incoming time-
domain signal into a time-frequency representation, the
acoustic features are extracted for each of the resulting
t-f units. Within the local clustering module, the sim-
ilarities between the extracted periodicity features are
analysed on a local level to form clusters of relatively ho-
mogenous acoustic attributes (comparable to the segmen-
tation stage in ASA). The obtained clusters are passed
on to the global grouping unit in which the prominent
spatial cues of each cluster are used to link the segments
that originate from similar directions. Like the above de-
scribed grouping stage, the previously disconnected clus-
ters are then assigned to a common source. In this way,
an estimate of the IBM is made. The estimated masks
are evaluated by comparing them with the masks that
are derived from the sound mixture components prior to
mixing.

Figure 2: System diagram



Pre-Processing

The left and right ear signals are first passed through a
gammatone filterbank with 32 filters. The center frequen-
cies are spaced on the equivalent rectangular bandwidth
(ERB) scale and range from 80 to 5000 Hz. Each filter
output is then divided into time frames of 20 ms length
with a 10 ms time shift. Thus, a cochleagram for each
ear is created that represents the signal in an array of
t-f units and which is the basis of the following feature
extraction.

Feature Extraction

In every t-f unit a set of features is extracted which in-
cludes location, periodicity and energy. For the latter
two, the sum of the t-f units in the right and left ear
channel is used.

Periodicity Features

The periodicity is analysed with the periodicity degree
(PD) as proposed in [2]. For every time frame j and filter
band k, the normalized autocorrelation (NAC) and comb
filtering ratio (CFR) are calculated for a range of period
candidates p. For filter bands with center frequencies
above 1.5 kHz the NAC and CFR are calculated from
the envelopes of the filter outputs instead of using the
outputs directly as it is done in the lower subbands. Both
values are then combined using

PD (j, k, p) = max [0.01, NAC (j, k, p) · CFR (j, k, p)] .
(1)

For every t-f bin a vector of PD values per period can-
didate is extracted. The originally described algorithm
for pitch extraction averages the periodicity information
across frequency bands within a time frame, this is omit-
ted here because we want to make frequency specific es-
timates of the grouping of t-f units.

Spatial Cues

For the extraction of spatial cues, a probabilistic localiza-
tion algorithm is used [1]. From each pair of t-f units for
the left and right ears the interaural time and level dif-
ferences (ITDs, ILDs) are calculated. Based on Gaussian
mixture models that are trained with ITD and ILD data
for each subband and a range of azimuths a, the likeli-
hood L (j, k, a) of each t-f (j, k) unit originating from a
certain location a is computed with

L (j, k, a) = log p (−−→xj,k|λk,φa
) , (2)

where −−→xj,k represents the observed binaural feature vec-
tor consisting of ITDs and ILDs, and λk,φa

the frequency-
and azimuth dependent Gaussian mixture model. For ev-
ery t-f bin a vector of likelihoods corresponding to a range
of azimuth ( -90◦, - 85◦, . . . 90◦) is available.

Local Clustering

The local clustering is based on each t-f units’ informa-
tion on periodicity and energy. Assuming that the PD
between two neighbouring units varies little if they are
both dominated by the same source, adjacent units are
assigned to the same cluster if their PD vectors are highly
correlated. However, if they are dominated by different
sources the correlation should be significantly lower and
a contour can be drawn between the units to mark the
onset of a different source. An illustration of the method
is given in Fig. 3.
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Figure 3: Similarity Values (SV) between t-f units are
mapped to an expanded matrix.Thresholds applied to the
across and within frequency band correlations determine if
two adjacent units are grouped.

The vector of PD values in unit (j, k) is correlated to its
4 direct neighbours (across frequency band and across
time) by using Pearson’s correlation coefficient between
the neighbouring PD vectors. The correlation coefficient
gives a measure of the similarity between the neighbours.
If it does not reach a given threshold, a 1 is noted be-
tween the neighbouring units to mark a contour line. Af-
ter doing so for every transition between t-f units, the
empty elements of the matrix (white squares in Fig 2.)
are also set to 1 if two or more of the 4 adjacent values
are set to 1. Thus, a map of contours is generated which
enclose regions of similar or slowly changing PD values.
T-f units with low energy produce rather unreliable PD
values which results in low correlations between neigh-
bours. Preferably, these units should be summarized in
the same cluster since they most likely belong to back-
ground noise. To avoid this problem the low energy units
are excluded from the periodicity based clustering and
are summarized in regions that are enclosed by contour
lines. To eventually create clusters, the obtained con-
tour map is processed with a region growing algorithm
[3] that fills an area within closed contour lines with the
same integer.

Global Grouping

The previously formed clusters are grouped together
based on their spatial properties. To achieve this, the
vectors of azimuth dependent log-likelihoods for all t-f



units within a contiguous cluster are summed. Purpose
of this summation is to attain a more reliable spatial es-
timate as compared to the available information within a
single t-f unit. Every cluster is then assigned the azimuth
location which reveals the highest log-likelihood after the
summation. To determine where the sources are located
throughout the whole signal, the azimuth log-likelihoods
are also summed over the entire time-frequency plane.
The dominant azimuths are detected and clusters at these
position (±15◦) are grouped together. Fig 3 displays the
results of the local clustering and global grouping for an
exemplary mixture of two simultaneous speakers (male
+ female) originating from static positions.
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Figure 4: Estimation of the ideal mask from a two speaker
mixture. A: Cochleagram of speech mixture, B:estimated con-
tours, C:local clusters, D:localized clusters.

Evaluation

The presented algorithm was tested in 3 noise conditions
and for 10 different speaker mixtures. Speech material
was taken from the TIMIT Corpus and each stimulus
consisted of a male and a female talker that were as-
signed to static positions at -70◦ and 60◦ on the horizon-
tal plane. We render the sources at these positions using
the HRTF database described in [7]. The two speakers
were always assigned different sentences and presented
simultaneously to create spectral and temporal overlap.
Speech and transfer functions were adjusted to a sam-
pling frequency of 16 kHz. Diffuse spatial noise was gen-
erated and mixed with the speaker mixtures at SNRs
of 20,10 and 5 dB SNR. Each t-f unit was classified to
one of three groups, either background noise, or one of
the two dominant azimuth positions as detected over the
entire time-frequency plane (assuming that the speak-
ers were actually located close to these azimuths). The
map of classified t-f units (bottom panel in Fig. 4) was
compared with the ideal classification map, derived from
the signal components prior to mixing (Fig.1). The esti-
mated segregation was evaluated based on the percentage

of correctly classified t-f units. The mean percentages of
correctly identified t-f elements and standard deviations
for the three noise conditions are displayed in Tab. 1.

Table 1: Percent correctly identified t-f units.

condition/dB SNR mean ± std
20 (66,4 ± 8,5)%
10 (63,0 ± 8,8)%
5 (54,2 ± 7,5)%

For the evaluated two talker mixtures these preliminary
results are promising. In the conditions with 20 and 10
dB SNR the algorithm was able to correctly classify more
than 60% of the t-f units. One can see that the per-
formance is significantly lower though when the SNR is
decreased to 5 dB.

Conclusion

A clustering of neighbouring t-f units based on period-
icity and energy properties is useful for estimating an
ideal mask. Even though the feature extraction in a
small t-f unit is likely to cause error-prone information
it is still possible to successfully group units with pro-
nounced periodicity based on next-neighbour similarity.
By applying a localizer to these clusters, the disconnected
segments could be grouped when originating from the
same direction. This allows to effectively combine bene-
fits of monaural and binaural cues. Through integration
of more acoustic features and the use of optimization
methods, the performance is supposed to be further im-
proved.
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